
 

Wentworth Institute of Technology 
COMP1000 – Computer Science I 
Fall 2017, Kreimendahl 

 

Programming Assignment 4 
In this assignment you are to write programs to solve the following problems. As with all assignments, 
remember the following submission steps: 

• Make sure your code passes at least all the provided JUnit tests 
• Create and test Javadoc code documentation 
• Save, commit, and push all code changes 
• Confirm the latest code is visible via the “Files” section of your repository website 
• Confirm that the repository is private, and that the instructor has Developer access 

Not that for each problem, some JUnit tests that will be used for grading have not been provided as a part 
of the starter code. It is your responsibility to thoroughly test your code. 

Problem a (PA4a.java) 
Write a program that deals with inflation, which is essentially the rising cost of general goods over time.  
That is, the price of goods, such as a packet of peanuts, goes up as time goes by. So, you will write a 
program to gauge the expected cost of an item in a specified number of years. The program asks for the 
cost of the item, the number of years, and the rate of inflation. The output is the estimated cost of the item 
after that number of years, using the given inflation rate. The user enters the inflation rate as a 
percentage, for example 4.5. You will have to convert the percentage to a fraction (like 0.045), and then 
use a loop to estimate the item's price adjusted for inflation. Note that this is similar to computing 
compound interest on a credit card account or a mortgage. Also note that you must check each of the 
values provided by the user to make sure that they are reasonable. Finally, you have to print out the price 
with exactly two places after the decimal (for the cents) after your calculations are done 

To adjust the price for inflation, you need to increase the price by the inflation rate each year. For 
example, if you have an item that is initially $10, with inflation rate of 10%, the adjusted prices will be: 

• After 1 year: $10.00 ∗ (1 + 0.10) = $11.00 
• After 2 years: $11.00 ∗ (1 + 0.10) = $12.10 
• After 3 years: $12.10 ∗ (1 + 0.10) = $13.31 

… 

In other words, to calculate the price after another year, you have to use the value from the current year, 
NOT the original price. To do this, you must use a loop. An example of what your program should output: 

Enter	the	current	price	of	the	item:	$10	
Enter	the	number	of	years:	3	
Enter	the	inflation	rate	as	a	percentage:	10	
After	3	years,	the	price	will	be	$13.31	
	
You have been supplied JUnit tests for some simple valid examples, as well as negative price, negative 
year, and negative interest rate. 



COMP1000, Fall 2017, Kreimendahl – Programming Assignment 4 2 

 

Problem b (PA4b.java) 
Write a program that plays a guessing game with the user. Specifically, your program should randomly 
pick a number between 1 and 100. Then, ask the user for a guess. You should detect and tell the user if the 
guess is not a valid guess. Otherwise, tell the user their guess was too high or too low. The program should 
continue to prompt the user for new guesses until they get the correct number, telling them each time if 
the guess was too high or too low or invalid. 

You have been supplied code to pick a random number between 1 and 100 each time you run your 
program. Here are a couple development/debugging strategies for this “target” variable: 

• Print out the random number, to make sure your program is acting correctly – remember to 
remove/comment this before running unit tests/submitting.  

• Temporarily set the random “seed” to a value, which will have the effect of always choosing the 
same random number – the unit tests have fixed seeds that you can use with known outcomes. 

• Temporarily set the “target” variable to a fixed number, so you can test to see how your program 
responds in different testing situations. 

Here’s a sample run of a working version of the program: 

Enter	your	guess	(between	1	and	100):	50	
Too	high!	
Enter	your	guess	(between	1	and	100):	0	
Invalid	guess,	try	again!	
Enter	your	guess	(between	1	and	100):	101	
Invalid	guess,	try	again!	
Enter	your	guess	(between	1	and	100):	25	
Too	high!	
Enter	your	guess	(between	1	and	100):	12	
Too	high!	
Enter	your	guess	(between	1	and	100):	6	
Too	high!	
Enter	your	guess	(between	1	and	100):	3	
Too	low!	
Enter	your	guess	(between	1	and	100):	4	
Too	low!	
Enter	your	guess	(between	1	and	100):	5	
You	win!	
	
You have been supplied with JUnit tests for a set of lucky guesses (i.e. the user immediately guesses the 
right answer), lucky guesses starting with invalid guesses, and a full game, including both invalid and 
valid guesses. 


